| Peer-Reviewed

Congenital Disorders of Glycosylation: A Review

Received: 23 September 2015     Accepted: 6 October 2015     Published: 14 October 2015
Views:       Downloads:
Abstract

Congenital disorders of glycosylation (CDG) are a rapidly growing group of inborn erros of metabolism with abnormal glycosylation of proteins and lipids. Nearly 70 inborn errors of metabolism have been described due to congenital defects of glycosylation, present as clinical syndromes, affecting multiple systems, impacting nearly every organ. No specific tests are available yet for screening all types of CDG, analysis of serum Tf by isoelectric focusing (IEF) or high-performance liquid chromatography (HPLC) / (matrix-assisted laser desorption/ionization MALDI) or serum N-glycans (by MS), enzyme activity assays and DNA sequence analysis are the most frequently used methods for CDG screening and diagnosis. We here review the clinical phenotypes in CDG defects.

Published in American Journal of Pediatrics (Volume 1, Issue 2)
DOI 10.11648/j.ajp.20150102.11
Page(s) 6-28
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Congenital Disorders of Glycosylation, Cdg, Transferrin, O-Glycosylation

References
[1] Acarregui MJ, George TN, Rhead WJ. Carbohydrate-deficient glycoprotein syndrome type 1 with profound thrombocytopenia and normal phosphomannomutase and phosphomannose isomerase activities. J Pediatr. 1998;133(5):697-700.
[2] Albahri Z, Marklová E, Vanícek H, Minxová L, Dédek P, Skálová S. Genetic variants of transferrin in the diagnosis of protein hypoglycosylation. J Inherit Metab Dis. 2005;28(6):1184-8.
[3] Al-Gazali L, Hertecant J, Algawi K, El Teraifi H, Dattani M. A new autosomal recessive syndrome of ocular colobomas, ichthyosis, brain malformations and endocrine abnormalities in an inbred Emirati family. Am J Med Genet A. 2008;146A(7):813-9.
[4] Almeida A, Layton M, Karadimitris A. Inherited glycosylphosphatidyl inositol deficiency: a treatable CDG. Biochim Biophys Acta. 2009;1792(9):874-80.
[5] Babovic-Vuksanovic D, Patterson MC, Schwenk WF, O'Brien JF, Vockley J, Freeze HH, Mehta DP, Michels VV. Severe hypoglycemia as a presenting symptom of carbohydrate-deficient glycoprotein syndrome. Pediatr. 1999;135(6):775-81.
[6] Barone R, Aiello C, Race V, Morava E, Foulquier F, Riemersma M, Passarelli C, Concolino D, Carella M, Santorelli F, Vleugels W, Mercuri E, Garozzo D, Sturiale L, Messina S, Jaeken J, Fiumara A, Wevers RA, Bertini E, Matthijs G, Lefeber DJ. DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol. 2012;72(4):550-8.
[7] Basmanav FB, Oprisoreanu AM, Pasternack SM, Thiele H, Fritz G, Wenzel J, Größer L, Wehner M, Wolf S, Fagerberg C, Bygum A, Altmüller J, Rütten A, Parmentier L, El Shabrawi-Caelen L, Hafner C, Nürnberg P, Kruse R, Schoch S, Hanneken S, Betz RC. Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant Dowling-Degos disease. Am J Hum Genet. 2014;94(1):135-43.
[8] Buysse K, Riemersma M, Powell G, van Reeuwijk J, Chitayat D, Roscioli T, Kamsteeg EJ, van den Elzen C, van Beusekom E, Blaser S, Babul-Hirji R, Halliday W, Wright GJ, Stemple DL, Lin YY, Lefeber DJ, van Bokhoven H. Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet. 2013;22(9):1746-54.
[9] Cantagrel V, Lefeber DJ, Ng BG, Guan Z, Silhavy JL, Bielas SL, Lehle L, Hombauer H, Adamowicz M, Swiezewska E, De Brouwer AP, Blümel P, Sykut-Cegielska J, Houliston S, Swistun D, Ali BR, Dobyns WB, Babovic-Vuksanovic D, van Bokhoven H, Wevers RA, Raetz CR, Freeze HH, Morava E, Al-Gazali L, Gleeson JG. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell. 2010;142(2):203-17.
[10] Cartault F, Munier P, Jacquemont ML, Vellayoudom J, Doray B, Payet C, Randrianaivo H, Laville JM, Munnich A, Cormier-Daire V Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes Larsen of Reunion Island syndrome. Eur J Hum Genet. 2015;23(1):49-53.
[11] Cylwik B, Lipartowska K, Chrostek L, Gruszewska E. Congenital disorders of glycosylation. Part II. Defects of protein O-glycosylation. Acta Biochim Pol. 2013;60(3):361-8. Review.
[12] Bahena-Bahena D, López-Valdez J, Raymond K, Salinas-Marína R, Ortega-Garcíaa A, Ng B.G, Freeze H.H, Ruíz-García M, Martínez-Dunckera I. ATP6V0A2 mutations present in two Mexican Mestizo children with an autosomal recessive cutis laxa syndrome type IIA. Molecular Genetics and Metabolism Reports 2014;1:203-12.
[13] de Koning TJ, Dorland L, van Diggelen OP, Boonman AM, de Jong GJ, van Noort WL, De Schryver J, Duran M, van den Berg IE, Gerwig GJ, Berger R, Poll-The BT. A novel disorder of N-glycosylation due to phosphomannose isomerase deficiency. Biochem Biophys Res Commun. 1998;245(1):38-42.
[14] de Ligt J, Willemsen M. H, van Bon B.W.M, Kleefstra T, Yntema H.G, Kroes T, Vulto-van Silfhout A.T, Koolen D.A, de Vries P, Gilissen C, del Rosario M, Hoischen A, Scheffer H, de Vries B. B. A, Brunner, H. G., Veltman, J. A., Vissers, L. E. L. M. Diagnostic exome sequencing in persons with severe intellectual disability. New Eng. J. Med. 2012;367:1921-29.
[15] De Praeter CM, Gerwig GJ, Bause E, Nuytinck LK, Vliegenthart JF, Breuer W, Kamerling JP, Espeel MF, Martin JJ, De Paepe AM, Chan NW, Dacremont GA, Van Coster RN. A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet. 2000;66(6):1744-56.
[16] Demaegd D, Foulquier F, Colinet AS, Gremillon L, Legrand D, Mariot P, Peiter E, Van Schaftingen E, Matthijs G, Morsomme P. Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells. Proc Natl Acad Sci U S A. 2013;110(17):6859-64.
[17] Denecke J, Kranz C, von Kleist-Retzow JCh, Bosse K, Herkenrath P, Debus O, Harms E, Marquardt T. Congenital disorder of glycosylation type Id: clinical phenotype, molecular analysis, prenatal diagnosis, and glycosylation of fetal proteins. Pediatr Res. 2005;58(2):248-53.
[18] Dörre K, Olczak M, Wada Y, Sosicka P, Grüneberg M, Reunert J, Kurlemann G, Fiedler B, Biskup S, Hörtnagel K, Rust S, Marquardt T. A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach. J Inherit Metab Dis. 2015. [Epub ahead of print].
[19] Duncan G, McCormick C, Tufaro F. The link between heparan sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins. J Clin Invest. 2001;108(4):511-6. Review.
[20] Etzioni A, Sturla L, Antonellis A, Green ED, Gershoni-Baruch R, Berninsone PM, Hirschberg CB, Tonetti M. Leukocyte adhesion deficiency (LAD) type II/carbohydrate deficient glycoprotein (CDG) IIc founder effect and genotype/phenotype correlation. Am J Med Genet. 2002;110(2):131-5.
[21] Eyskens F, Ceuterick C, Martin JJ, Janssens G, Jaeken J. Carbohydrate-deficient glycoprotein syndrome with previously unreported features. Acta Paediatr. 1994;83(8):892-6.
[22] Faletra F, Athanasakis E, Minen F, Fornasier F, Marchetti F, Gasparini P. Vertebral defects in patients with Peters plus syndrome and mutations in B3GALTL. Ophthalmic Genet. 2011;32(4):256-8.
[23] Foulquier F, Vasile E, Schollen E, Callewaert N, Raemaekers T, Quelhas D, Jaeken J, Mills P, Winchester B, Krieger M, Annaert W, Matthijs G. Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci U S A. 2006;103(10):3764-9.
[24] Foulquier F, Ungar D, Reynders E, Zeevaert R, Mills P, García-Silva MT, Briones P, Winchester B, Morelle W, Krieger M, Annaert W, Matthijs G A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum Mol Genet. 2007;16(7):717-30.
[25] Foulquier F, Amyere M, Jaeken J, Zeevaert R, Schollen E, Race V, Bammens R, Morelle W, Rosnoblet C, Legrand D, Demaegd D, Buist N, Cheillan D, Guffon N, Morsomme P, Annaert W, Freeze HH, Van Schaftingen E, Vikkula M, Matthijs G. TMEM165 deficiency causes a congenital disorder of glycosylation. Am J Hum Genet. 2012;91(1):15-26.
[26] Frank CG, Grubenmann CE, Eyaid W, Berger EG, Aebi M, Hennet T. Identification and functional analysis of a defect in the human ALG9 gene: definition of congenital disorder of glycosylation type IL. Am J Hum Genet. 2004;75(1):146-50.
[27] Freeze HH, Schachter H. Genetic Disorders of Glycosylation. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of Glycobiology. 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009. Chapter 42.
[28] Freeze HH. Update and perspectives on congenital disorders of glycosylation. Glycobiology. 2001;11(12):129R-143R. Review.
[29] Goreta SS, Dabelic S, Dumic J. Insights into complexity of congenital disorders of glycosylation. Biochem Med (Zagreb). 2012;22(2):156-70. Review.
[30] Goreta SS, Dabelic S, Dumic J. Insights into complexity of congenital disorders of glycosylation. Biochem Med (Zagreb). 2012;22(2):156-70. Review
[31] Grubenmann CE, Frank CG, Hulsmeier AJ, Schollen E, Matthijs G, Mayatepek E, Berger EG, Aebi M, Hennet T. Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik. Hum Mol Genet. 2004;13(5):535-42.
[32] Grünewald S, Matthijs G. Congenital disorders of glycosylation (CDG): a rapidly expanding group of neurometabolic disorders. Neuropediatrics. 2000;31(2):57-9. Review
[33] Guillard M, Morava E, van Delft FL, Hague R, Körner C, Adamowicz M, Wevers RA, Lefeber DJ. Plasma N-glycan profiling by mass spectrometry for congenital disorders of glycosylation type II. Clin Chem. 2011;57(4):593-602.
[34] Haeuptle MA, Hennet T. Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum Mutat 2009;30:1628-41.
[35] Hansske B, Thiel C, Lübke T, Hasilik M, Höning S, Peters V, Heidemann PH, Hoffmann GF, Berger EG, von Figura K, Körner C. Deficiency of UDP-galactose:N-acetylglucosamine beta-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId. J Clin Invest. 2002;109(6):725-33.
[36] Helander A, Stödberg T, Jaeken J, Matthijs G, Eriksson M, Eggertsen G. Dolichol kinase deficiency (DOLK-CDG) with a purely neurological presentation caused by a novel mutation. Mol Genet Metab. 2013;110(3):342-4.
[37] Hu H, Eggers K, Chen W, Garshasbi M, Motazacker MM, Wrogemann K, Kahrizi K, Tzschach A, Hosseini M, Bahman I, Hucho T, Mühlenhoff M, Gerardy-Schahn R, Najmabadi H, Ropers HH, Kuss AW. ST3GAL3 mutations impair the development of higher cognitive functions. Am J Hum Genet. 2011;89(3):407-14.
[38] Huybrechts S, De Laet C, Bontems P, Rooze S, Souayah H, Sznajer Y, Sturiale L, Garozzo D, Matthijs G, Ferster A, Jaeken J, Goyens P. Deficiency of Subunit 6 of the Conserved Oligomeric Golgi Complex (COG6-CDG): Second Patient, Different Phenotype. JIMD Rep. 2012;4:103-8.
[39] Chantret I, Dupre T, Delenda C, Bucher S, Dancourt J, Barnier A, Charollais A, Heron D, Bader-Meunier B, Danos O, Seta N, Durand G, Oriol R, Codogno P, Moore SE. Congenital disorders of glycosylation type Ig is defined by a deficiency in dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl mannosyltransferase. J Biol Chem. 2002;277(28):25815-22.
[40] Chantret I, Dancourt J, Dupre T, Delenda C, Bucher S, Vuillaumier-Barrot S, Ogier de Baulny H, Peletan C, Danos O, Seta N, Durand G, Oriol R, Codogno P, Moore SE. A deficiency in dolichyl-P-glucose:Glc1Man9GlcNAc2-PP-dolichyl alpha3-glucosyltransferase defines a new subtype of congenital disorders of glycosylation. J Biol Chem. 2003;278(11):9962-71.
[41] Charlwood J, Clayton P, Johnson A, Keir G, Mian N, Winchester B.
[42] A case of the carbohydrate-deficient glycoprotein syndrome type 1 (CDGS type 1) with normal phosphomannomutase activity. J Inherit Metab Dis. 1997;20(6):817-26.
[43] Iannotti MJ, Figard L, Sokac AM, Sifers RN. A Golgi-localized mannosidase (MAN1B1) plays a non-enzymatic gatekeeper role in protein biosynthetic quality control. J Biol Chem. 2014;289(17):11844-58.
[44] Imbach T, Schenk B, Schollen E, Burda P, Stutz A, Grunewald S, Bailie NM, King MD, Jaeken J, Matthijs G, Berger EG, Aebi M, Hennet T. Deficiency of dolichol-phosphate-mannose synthase-1 causes congenital disorder of glycosylation type Ie. Clin Invest. 2000;105(2):233-9.
[45] Jaeken J, Matthijs G, Saudubray JM, Dionisi-Vici C, Bertini E, de Lonlay P, Henri H, Carchon H, Schollen E, Van Schaftingen E. Phosphomannose isomerase deficiency: a carbohydrate-deficient glycoprotein syndrome with hepatic-intestinal presentation. Am J Hum Genet. 1998;62(6):1535-9.
[46] Jaeken J, Vleugels W, Régal L, Corchia C, Goemans N, Haeuptle MA, Foulquier F, Hennet T, Matthijs G, Dionisi-Vici C RFT1-CDG: deafness as a novel feature of congenital disorders of glycosylation. J Inherit Metab Dis. 2009;32 Suppl 1:S335-8.
[47] Jaeken J, Carchon H, Stibler H. The carbohydrate-deficient glycoprotein syndromes: pre-Golgi and Golgi disorders? Glycobiology. 1993;3(5):423-8. Review
[48] Jaeken J, Vanderschueren-Lodeweyckx M, Casear P, Snoeck L, Corbel L, Eggermont E, et al. Familial psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG deficiency, increased serum arylsulfatase A and increased CSF protein: A new syndrome? Pediatr Res 1980; 14: 179.
[49] Jaeken J. Congenital disorders of glycosylation. Ann N Y Acad Sci. 2010;1214:190-8. Review.
[50] Jones MA, Ng BG, Bhide S, Chin E, Rhodenizer D, He P, Losfeld ME, He M, Raymond K, Berry G, Freeze HH, Hegde MR. DDOST mutations identified by whole-exome sequencing are implicated in congenital disorders of glycosylation. Am J Hum Genet. 2012;90(2):363-8.
[51] Kahrizi K, Hu CH, Garshasbi M, Abedini SS, Ghadami S, Kariminejad R, Ullmann R, Chen W, Ropers HH, Kuss AW, Najmabadi H, Tzschach A. Next generation sequencing in a family with autosomal recessive Kahrizi syndrome (OMIM 612713) reveals a homozygous frameshift mutation in SRD5A3. Eur J Hum Genet. 2011;19(1):115-7.
[52] Kahrizi K, Hu CH, Garshasbi M, Abedini SS, Ghadami S, Kariminejad R, Ullmann R, Chen W, Ropers HH, Kuss AW, Najmabadi H, Tzschach A. Next generation sequencing in a family with autosomal recessive Kahrizi syndrome reveals a homozygous frameshift mutation in SRD5A3. Eur J Hum Genet. 2011;19(1):115-7.
[53] Kim S, Westphal V, Srikrishna G, Mehta DP, Peterson S, Filiano J, Karnes PS, Patterson MC, Freeze HH. Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie) J Clin Invest. 2000;105(2):191-8.
[54] Kjaergaard S, Schwartz M, Skovby F. Congenital disorder of glycosylation type Ia (CDG-Ia): phenotypic spectrum of the R141H/F119L genotype. Arch Dis Child. 2001;85(3):236-9.
[55] Kodera H, Ando N, Yuasa I, Wada Y, Tsurusaki Y, Nakashima M, Miyake N, Saitoh S, Matsumoto N, Saitsu H. Mutations in COG2 encoding a subunit of the conserved oligomeric golgi complex cause a congenital disorder of glycosylation. Clin Genet. 2015;87(5):455-60.
[56] Koehler K, Malik M, Mahmood S, Gießelmann S, Beetz C, Hennings JC, Huebner AK, Grahn A, Reunert J, Nürnberg G, Thiele H, Altmüller J, Nürnberg P, Mumtaz R, Babovic-Vuksanovic D, Basel-Vanagaite L, Borck G, Brämswig J, Mühlenberg R, Sarda P, Sikiric A, Anyane-Yeboa K, Zeharia A, Ahmad A, Coubes C, Wada Y, Marquardt T, Vanderschaeghe D, Van Schaftingen E, Kurth I, Huebner A, Hübner CA. Mutations in GMPPA cause a glycosylation disorder characterized by intellectual disability and autonomic dysfunction. Am J Hum Genet. 2013;93(4):727-34.
[57] Körner C, Lehle L, von Figura K. Carbohydrate-deficient glycoprotein syndrome type 1: correction of the glycosylation defect by deprivation of glucose or supplementation of mannose. Glycoconj J. 1998;15(5):499-505.
[58] Kranz C, Basinger AA, Güçsavaş-Calikoğlu M, Sun L, Powell CM, Henderson FW, Aylsworth AS, Freeze HH. Expanding spectrum of congenital disorder of glycosylation Ig (CDG-Ig): sibs with a unique skeletal dysplasia, hypogammaglobulinemia, cardiomyopathy, genital malformations, and early letality Am J Med Genet A. 2007;143A(12):1371-8.
[59] Kranz C, Denecke J, Lehle L, Sohlbach K, Jeske S, Meinhardt F, Rossi R, Gudowius S, Marquardt T. Congenital disorder of glycosylation type Ik (CDG-Ik): a defect of mannosyltransferase I. Am J Hum Genet. 2004;74(3):545-51.
[60] Lam BL, Züchner SL, Dallman J, Wen R, Alfonso EC, Vance JM, Peričak-Vance MA. Mutation K42E in dehydrodolichol diphosphate synthase (DHDDS) causes recessive retinitis pigmentosa. Adv Exp Med Biol. 2014;801:165-70.
[61] Lefeber DJ, de Brouwer AP, Morava E, Riemersma M, Schuurs-Hoeijmakers JH, Absmanner B, Verrijp K, van den Akker WM, Huijben K, Steenbergen G, van Reeuwijk J, Jozwiak A, Zucker N, Lorber A, Lammens M, Knopf C, van Bokhoven H, Grünewald S, Lehle L, Kapusta L, Mandel H, Wevers RA. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 2011;7(12):e1002427
[62] Lefeber DJ, Schönberger J, Morava E, Guillard M, Huyben KM, Verrijp K, Grafakou O, Evangeliou A, Preijers FW, Manta P, Yildiz J, Grünewald S, Spilioti M, van den Elzen C, Klein D, Hess D, Ashida H, Hofsteenge J, Maeda Y, van den Heuvel L, Lammens M, Lehle L, Wevers RA. Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am J Hum Genet. 2009;85(1):76-86.
[63] Losfeld ME, Ng BG, Kircher M, Buckingham KJ, Turner EH, Eroshkin A, Smith JD, Shendure J, Nickerson DA, Bamshad MJ; University of Washington Center for Mendelian Genomics, Freeze HH. A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex. Hum Mol Genet. 2014;23(6):1602-5.
[64] Lübbehusen J, Thiel C, Rind N, Ungar D, Prinsen BH, de Koning TJ, van Hasselt PM, Körner C. Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum Mol Genet. 2010;19(18):3623-33.
[65] Lübke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Körner C. Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet. 2001;28(1):73-6.
[66] Marklová E, Albahri Z. Screening and diagnosis of congenital disorders of glycosylation. Clin Chim Acta. 2007;385(1-2):6-20. Review.
[67] Marklová E, Albahri Z. Pitfalls and drawbacks in screening of congenital disorders of glycosylation. Clin Chem Lab Med. 2004;42(6):583-9.
[68] Marquardt T, Denecke J. Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur J Pediatr. 2003;162(6):359-79.
[69] Marquardt T, Luhn K, Srikrishna G, Freeze HH, Harms E, Vestweber D. Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 1999;94:3976-85.
[70] Marquardt T, Luhn K, Srikrishna G, Freeze HH, Harms E, Vestweber D. Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 1999;94:3976-85.
[71] Martinez-Duncker I, Dupré T, Piller V, Piller F, Candelier JJ, Trichet C, Tchernia G, Oriol R, Mollicone R. Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood 2005; 105:2671-76.
[72] Mayatepek E, Schröder M, Kohlmüller D, Bieger WP, Nützenadel W. Continuous mannose infusion in carbohydrate-deficient glycoprotein syndrome type I. Acta Paediatr. 1997;86(10):1138-40.
[73] Meilleur KG, Zukosky K, Medne L, Fequiere P, Powell-Hamilton N, Winder TL, Alsaman A, El-Hattab AW, Dastgir J, Hu Y, Donkervoort S, Golden JA, Eagle R, Finkel R, Scavina M, Hood IC, Rorke-Adams LB, Bönnemann CG. Clinical, pathologic, and mutational spectrum of dystroglycanopathy caused by LARGE mutations. J Neuropathol Exp Neurol. 2014;73(5):425-41.
[74] Messina S, Tortorella G, Concolino D, Spanò M, D'Amico A, Bruno C, Santorelli FM, Mercuri E, Bertini E. Congenital muscular dystrophy with defective alpha-dystroglycan, cerebellar hypoplasia, and epilepsy. Neurology. 2009;73(19):1599-601.
[75] Mohorko E, Glockshuber R, Aebi M. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis 2011;34:869-78.
[76] Molinari F, Foulquier F, Tarpey PS, Morelle W, Boissel S, Teague J, Edkins S, Futreal PA, Stratton MR, Turner G, Matthijs G, Gecz J, Munnich A, Colleaux L. Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Genet. 2008;82(5):1150-7.
[77] Niehues R, Hasilik M, Alton G, Korner C, Schiebe-Sukumar M, Koch HG, Zimmer KP, Wu R, Harms E, Reiter K, von Figura K, Freeze HH, Harms HK, Marquardt T. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest. 1998;101(7):1414-20.
[78] Niehues R, Hasilik M, Alton G, Körner C, Schiebe-Sukumar M, Koch HG, Zimmer KP, Wu R, Harms E, Reiter K, von Figura K, Freeze HH, Harms HK, Marquardt T. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest. 1998;101(7):1414-20.
[79] Oka T, Vasile E, Penman M, Novina CD, Dykxhoorn DM, Ungar D, Hughson FM, Krieger M. Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells. J Biol Chem. 2005;280(38):32736-45.
[80] Paesold-Burda P, Maag C, Troxler H, Foulquier F, Kleinert P, Schnabel S, Baumgartner M, Hennet T. Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum Mol Genet. 2009;18(22):4350-6.
[81] Pancho C, Garcia-Cazorla A, Varea V, Artuch R, Ferrer I, Vilaseca MA, Briones P, Campistol J. Congenital disorder of glycosylation type Ia revealed by hypertransaminasemia and failure to thrive in a young boy with normal neurodevelopment. J Pediatr Gastroenterol Nutr. 2005;40(2):230-2.
[82] Panneerselvam K, Freeze HH. Mannose corrects altered N-glycosylation in carbohydrate-deficient glycoprotein syndrome fibroblasts. J Clin Invest. 1996;97(6):1478-87.
[83] Peters V, Penzien JM, Reiter G, Korner C, Hackler R, Assmann B, et al. Congenital disorder of glycosylation IId (CDG-IId) - a new entity: clinical presentation with Dandy-Walker malformation and myopathy. Neuropediatrics 2002;33:27-32.
[84] Reed UC. Congenital muscular dystrophy. Part I: a review of phenotypical and diagnostic aspects. Arq Neuropsiquiatr. 2009;67(1):144-68.
[85] Reynders E, Foulquier F, Leão Teles E, Quelhas D, Morelle W, Rabouille C, Annaert W, Matthijs G. Hum Mol Genet. Golgi function and dysfunction in the first COG4-deficient CDG type II patient. 2009;18(17):3244-56.
[86] Rind N, Schmeiser V, Thiel C, Absmanner B, Lübbehusen J, Hocks J, Apeshiotis N, Wilichowski E, Lehle L, Körner C. A severe human metabolic disease caused by deficiency of the endoplasmatic mannosyltransferase hALG11 leads to congenital disorder of glycosylation-Ip. Hum Mol Genet. 2010 19(8):1413-24.
[87] Roscioli T, Kamsteeg EJ, Buysse K, Maystadt I, van Reeuwijk J, van den Elzen C, et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Nat Genet. 2012;44(5):581-5.
[88] Rutschow S, Thiem J, Kranz C, Marquardt T. Membrane-permeant derivatives of mannose-1-phosphate. Bioorg Med Chem. 2002;10(12):4043-9.
[89] Rymen D, Peanne R, Millón MB, Race V, Sturiale L, Garozzo D, Mills P, Clayton P, Asteggiano CG, Quelhas D, Cansu A, Martins E, Nassogne MC, Gonçalves-Rocha M, Topaloglu H, Jaeken J, Foulquier F, Matthijs G. MAN1B1 deficiency: an unexpected CDG-II. PLoS Genet. 2013;9(12):e1003989.
[90] Reed UC. Congenital muscular dystrophy. Part I: a review of phenotypical and diagnostic aspects. Arq Neuropsiquiatr. 2009;67(1):144-68.
[91] Sadat MA, Moir S, Chun TW, Lusso P, Kaplan G, Wolfe L, Memoli MJ, He M, Vega H, Kim LJ, Huang Y, Hussein N, Nievas E, Mitchell R, Garofalo M, Louie A, Ireland DC, Grunes C, Cimbro R, Patel V, Holzapfel G, Salahuddin D, Bristol T, Adams D, Marciano BE, Hegde M, Li Y, Calvo KR, Stoddard J, Justement JS, Jacques J, Long Priel DA, Murray D, Sun P, Kuhns DB, Boerkoel CF, Chiorini JA, Di Pasquale G, Verthelyi D, Rosenzweig SD. Glycosylation, hypogammaglobulinemia, and resistance to viral infections. N Engl J Med. 2014;370(17):1615-25.
[92] Shang J, Lehrman MA.. Metformin-stimulated mannose transport in dermal fibroblasts. J Biol Chem. 2004;279(11):9703-12. Freeze HH. Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 2013;288:6936-45.
[93] Shrimal S, Ng BG, Losfeld ME, Gilmore R, Freeze HH. Mutations in STT3A and STT3B cause two congenital disorders of glycosylation. 2013;22(22):4638-45.
[94] Schollen E, Frank CG, Keldermans L, Reyntjens R, Grubenmann CE, Clayton PT, Winchester BG, Smeitink J, Wevers RA, Aebi M, Hennet T, Matthijs G. Clinical and molecular features of three patients with congenital disorders of glycosylation type Ih (CDG-Ih) (ALG8 deficiency). J Med Genet. 2004;41(7):550-6.
[95] Skladal D, Sperl W, Henry H, Bachmann C. Congenital cataract and familial brachydactyly in carbohydrate-deficient glycoprotein syndrome. J Inherit Metab Dis. 1996;19(2):251-2.
[96] Sparrow D. B, Chapman G, Wouters M. A, Whittock N. V, Ellard S, Fatkin D, Turnpenny P. D, Kusumi K, Sillence D, Dunwoodie S. L. Mutation of the lunatic fringe gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am. J. Hum. Genet. 2006;78: 28-37.
[97] Stanley P. Golgi glycosylation. Cold Spring Harb Perspect Biol. 2011;3(4). Review
[98] Stibler H, Holzbach U, Kristiansson B. Isoforms and levels of transferrin, antithrombin, alpha(1)-antitrypsin and thyroxine-binding globulin in 48 patients with carbohydrate-deficient glycoprotein syndrome type I. Scand J Clin Lab Invest. 1998;58(1):55-61.
[99] Stibler H, Stephani U, Kutsch U. Carbohydrate-deficient glycoprotein syndrome--a fourth subtype. Neuropediatrics. 1995;26(5):235-7.
[100] Stittrich AB, Lehman A, Bodian DL, Ashworth J, Zong Z, Li H, Lam P, Khromykh A, Iyer RK, Vockley JG, Baveja R, Silva ES, Dixon J, Leon EL, Solomon BD, Glusman G, Niederhuber JE, Roach JC, Patel MS Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet. 2014;95(3):275-84.
[101] Stojkovi T, Vissing J, Petit F, Piraud M, Orngreen M.C, Andersen G, Claeys K.G, Wary C, Hogrel J-Y, Laforet P. Muscle glycogenosis due to phosphoglucomutase 1 deficiency. (Letter) New Eng. J. Med. 2009;361:425-27.
[102] Stölting T, Omran H, Erlekotte A, Denecke J, Reunert J, Marquardt T. Novel ALG8 mutations expand the clinical spectrum of congenital disorder of glycosylation type Ih. Mol Genet Metab. 2009;98(3):305-9.
[103] Sun L, Eklund EA, Van Hove JL, Freeze HH, Thomas JA. Clinical and molecular characterization of the first adult congenital disorder of glycosylation (CDG) type Ic patient. Am J Med Genet A. 2005;137(1):22-6.
[104] Tegtmeyer LC, Rust S, van Scherpenzeel M, Ng BG, Losfeld ME, Timal S, Raymond K, He P, Ichikawa M, Veltman J, Huijben K, Shin YS, Sharma V, Adamowicz M, Lammens M, Reunert J, Witten A, Schrapers E, Matthijs G, Jaeken J, Rymen D, Stojkovic T, Laforêt P, Petit F, Aumaître O, Czarnowska E, Piraud M, Podskarbi T, Stanley CA, Matalon R, Burda P, Seyyedi S, Debus V, Socha P, Sykut-Cegielska J, van Spronsen F, de Meirleir L, Vajro P, DeClue T, Ficicioglu C, Wada Y, Wevers RA, Vanderschaeghe D, Callewaert N, Fingerhut R, van Schaftingen E, Freeze HH, Morava E, Lefeber DJ, Marquardt T. Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med. 2014;370(6):533-42.
[105] Thiel C, Schwarz M, Peng J, Grzmil M, Hasilik M, Braulke T, Kohlschutter A, von Figura K, Lehle L, Korner C. A new type of congenital disorders of glycosylation (CDG-Ii) provides new insights into the early steps of dolichol-linked oligosaccharide biosynthesis. J Biol Chem. 2003;278(25):22498-505.
[106] Thiel C, Rind N, Popovici D, Hoffmann GF, Hanson K, Conway RL, Adamski CR, Butler E, Scanlon R, Lambert M, Apeshiotis N, Thiels C, Matthijs G, Körner C. Improved diagnostics lead to identification of three new patients with congenital disorder of glycosylation-Ip. Hum Mutat. 2012;33(3):485-7.
[107] Thiel C, Rind N, Popovici D, Hoffmann GF, Hanson K, Conway RL, Adamski CR, Butler E, Scanlon R, Lambert M, Apeshiotis N, Thiels C, Matthijs G, Körner C. Improved diagnostics lead to identification of three new patients with congenital disorder of glycosylation-Ip. Hum Mutat. 2012;33(3):485-7.
[108] Thiel C, Rind N, Popovici D, Hoffmann GF, Hanson K, Conway RL, Adamski CR, Butler E, Scanlon R, Lambert M, Apeshiotis N, Thiels C, Matthijs G, Körner C. Improved diagnostics lead to identification of three new patients with congenital disorder of glycosylation-Ip. Hum Mutat. 2012;33(3):485-7.
[109] Timal S, Hoischen A, Lehle L, Adamowicz M, Huijben K, Sykut-Cegielska J, Paprocka J, Jamroz E, van Spronsen FJ, Körner C, Gilissen C, Rodenburg RJ, Eidhof I, Van den Heuvel L, Thiel C, Wevers RA, Morava E, Veltman J, Lefeber DJ. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing. Hum Mol Genet. 2012;21(19):4151-61.
[110] Timal S, Hoischen A, Lehle L, Adamowicz M, Huijben K, Sykut-Cegielska J, Paprocka J, Jamroz E, van Spronsen FJ, Körner C, Gilissen C, Rodenburg RJ, Eidhof I, Van den Heuvel L, Thiel C, Wevers RA, Morava E, Veltman J, Lefeber DJ. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing. Hum Mol Genet. 2012;21(19):4151-61.
[111] Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M, Khamaysi Z, Behar D, Petronius D, Friedman V, Zelikovic I, Raimer S, Metzker A, Richard G, Sprecher E Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet. 2004;36(6):579-81.
[112] Van Scherpenzeel M, Timal S, Rymen D, Hoischen A, Wuhrer M et al Diagnostic serum glycosylation profile in patients with intellectual disability due to MAN1B1 deficiency. Brain 2014;137:1030-38.
[113] Varki A. Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol. 1998;8(1):34-40. Review.
[114] Vleugels W, Haeuptle MA, Ng BG, Michalski JC, Battini R, Dionisi-Vici C, Ludman MD, Jaeken J, Foulquier F, Freeze HH, Matthijs G, Hennet T. RFT1 deficiency in three novel CDG patients. Hum Mutat. 2009;30(10):1428-34.
[115] Wen R, Dallman JE, Li Yet al (2014) Knock-down DHDDS expression induces photoreceptor degeneration in zebrafish. Adv Exp Med Biol 801:543–50.
[116] Wicklund MP, Kissel JT. The limb-girdle muscular dystrophies. Neurol Clin. 2014;32(3):729-49. Review.
[117] Wu X, Steet RA, Bohorov O, Bakker J, Newell J, Krieger M, Spaapen L, Kornfeld S, Freeze HH. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med. 2004;10(5):518-23.
[118] Zeevaert R, de Zegher F, Sturiale L, Garozzo D, Smet M, Moens M. Matthijs G, Jaeken J Bone dysplasia as a key feature in three patients with a novel Congenital Disorder of Glycosylation (CDG) Type II due to a deep intronic splice mutation in TMEM165. J Inherit Metab Dis.2013;8:145-52.
[119] Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S, Lamborn IT et al. Autosomal recessive phosphoglucomutase 3 (PGM3)mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol . 2014;133(5):1400-9.
Cite This Article
  • APA Style

    Ziad Albahri. (2015). Congenital Disorders of Glycosylation: A Review. American Journal of Pediatrics, 1(2), 6-28. https://doi.org/10.11648/j.ajp.20150102.11

    Copy | Download

    ACS Style

    Ziad Albahri. Congenital Disorders of Glycosylation: A Review. Am. J. Pediatr. 2015, 1(2), 6-28. doi: 10.11648/j.ajp.20150102.11

    Copy | Download

    AMA Style

    Ziad Albahri. Congenital Disorders of Glycosylation: A Review. Am J Pediatr. 2015;1(2):6-28. doi: 10.11648/j.ajp.20150102.11

    Copy | Download

  • @article{10.11648/j.ajp.20150102.11,
      author = {Ziad Albahri},
      title = {Congenital Disorders of Glycosylation: A Review},
      journal = {American Journal of Pediatrics},
      volume = {1},
      number = {2},
      pages = {6-28},
      doi = {10.11648/j.ajp.20150102.11},
      url = {https://doi.org/10.11648/j.ajp.20150102.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajp.20150102.11},
      abstract = {Congenital disorders of glycosylation (CDG) are a rapidly growing group of inborn erros of metabolism with abnormal glycosylation of proteins and lipids. Nearly 70 inborn errors of metabolism have been described due to congenital defects of glycosylation, present as clinical syndromes, affecting multiple systems, impacting nearly every organ. No specific tests are available yet for screening all types of CDG, analysis of serum Tf by isoelectric focusing (IEF) or high-performance liquid chromatography (HPLC) / (matrix-assisted laser desorption/ionization MALDI) or serum N-glycans (by MS), enzyme activity assays and DNA sequence analysis are the most frequently used methods for CDG screening and diagnosis. We here review the clinical phenotypes in CDG defects.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Congenital Disorders of Glycosylation: A Review
    AU  - Ziad Albahri
    Y1  - 2015/10/14
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ajp.20150102.11
    DO  - 10.11648/j.ajp.20150102.11
    T2  - American Journal of Pediatrics
    JF  - American Journal of Pediatrics
    JO  - American Journal of Pediatrics
    SP  - 6
    EP  - 28
    PB  - Science Publishing Group
    SN  - 2472-0909
    UR  - https://doi.org/10.11648/j.ajp.20150102.11
    AB  - Congenital disorders of glycosylation (CDG) are a rapidly growing group of inborn erros of metabolism with abnormal glycosylation of proteins and lipids. Nearly 70 inborn errors of metabolism have been described due to congenital defects of glycosylation, present as clinical syndromes, affecting multiple systems, impacting nearly every organ. No specific tests are available yet for screening all types of CDG, analysis of serum Tf by isoelectric focusing (IEF) or high-performance liquid chromatography (HPLC) / (matrix-assisted laser desorption/ionization MALDI) or serum N-glycans (by MS), enzyme activity assays and DNA sequence analysis are the most frequently used methods for CDG screening and diagnosis. We here review the clinical phenotypes in CDG defects.
    VL  - 1
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Pediatrics - Faculty hospital, Charles University in Hradec Králové, Czech Republic

  • Sections